Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Info

This article is valid for Smart ID Identity Manager 24.R1 or later.

...

Descriptor name

Description of use

Configurable?

HSM supported

EncryptedFields

Encrypt secret fields in Identity Manager, for example PIN codes in data pool definitions. It is not possible to change the keys once encrypted fields have been stored in the database.

Yes.

The descriptor can be changed during installation. After installation, it can only be changed using the Secret Fields Key Updater. See Change Encryption key of secret field store.

Note

If it is changed without using the Secret Fields Key Updater, then already encrypted fields stored in the database will not be readable.

Note that it is currently limited to a single descriptor version (defaults to 1 in the bean config).

(tick)

ConfigZipEncrypter

Encrypt configuration ZIP files downloaded from IDM.

Yes.

Note

If it is changed, then existing encrypted config ZIP files can lo longer be imported.

Note that it is currently limited to a single descriptor version (defaults to 1 in the bean config).

(tick)

ConfigZipSigner

Sign the Identity Manager configuration archive. Verification of the configuration archive uses the certificate that was put in the archive during signing.

Yes.

Changes take effect after restart of Identity Manager.

Versioning is possible, but unnecessary.

It is sufficient that the certificate that signed the old configs is trusted via the IDM truststore.

(tick)

ObjectHistorySigner

Sign and verify database history.

Yes.

Note

Old descriptors and certificates must be kept by using versioning, in order to verify history entries signed with them (see above example file). 


(tick)

SignEmailDescriptor

Sign emails from Identity Manager.

Yes.

Changes take effect after restart of Identity Manager.

Versioning is possible, but unnecessary.

(tick)

hermodDeviceEnc

Communication with new device via Smart ID Messaging (Hermod), for example with Smart ID Mobile App or Smart ID Desktop App

Note

Unlike the other entries, this one has no security relevance!
What is configured here is a dummy CA that issues transient certificates which are merely used internally as a form of transport container for the keyUsage attribute.


Yes.

Changes take effect after restart of Identity Manager. 

Versioning is possible, but unnecessary.

(error) (not needed, though)

SelfServiceJWTSigner

Authenticate Smart ID Self-Service users to the Identity Manager backend.

Yes.

Changes take effect after restart of Identity Manager

Versioning is possible, but unnecessary.

(tick)

ContentProviderJWSSigner

Used for JWS signing in Hermod Content Provider API.

Yes.

Versioning is possible, but unnecessary.

(tick)

att_ATTESTATION,

att_external-attestation-1,

att_external-attestation-2,

att_external-attestation-3,

att_external-attestation-4

Validation of keys generated with the Smart ID Mobile App and Smart ID Desktop App.

These keys are used for validating the CSR that the "Mobile App: Create Key", "Desktop App: Create Virtual Smart Card Key" and "Desktop App: Create Windows Cert Store Key" tasks generate. See Smart ID Messaging - Standard service tasks in Identity Manager and Smart ID Messaging - Standard service tasks in Identity Manager. In these tasks you can configure which key to use:

  • att_ATTESTATION is the default key that will be used in case no other key has been configured.

  • att_external_attestation-1 through att_external_attestation-4 are further keys that are available on the Mobile App only.

No, for the Smart ID Desktop App, as The Smart ID Desktop App currently does not support changing this key.

Yes, for Smart ID Mobile App.

The default keys that are shipped with Identity Manager are built into Smart ID Mobile App. In case the mobile app is provided with custom keys, you need to create PKCS#12 containers with these keys and configure them in the engine (see https://doc.nexusgroup.com/pub/configure-custom-attestation-keys for now to create PKCS#12 containers from the public key).

You can also export the certificates from the PKCS#12 containers the import them into an HSM.

Changes take effect after restart of Identity Manager.

Note

Old descriptors and certificates can be kept by using versioning, in order to verify requests signed with them. 


(tick) (but less relevant, as IDM only needs the public keys)

...

This is an example of a descriptor (taken from the file shown above in the example file engineSignEncryptConfig.xml or signencrypt.xmlfor docker deployment), see the tables below the example for more information.

...

descriptor element attribute

Description

name

Used by Identity Manager to refer to this descriptor. There might be different descriptors with the same name but with different versions.

version

A numeric value that denotes the descriptor's version. This is only needed for the ObjectHistorySigner. A new version of a descriptor is needed, for example, when an old certificate needs to be replaced. The descriptor with the highest version number is used. Verification of Object History entries will automatically select the right descriptor version.

Attribute of the type element inside descriptor

Description

algorithm

For field encryption: a symmetric algorithm to be used, for example, AES/CBC/PKCS7Padding.

For JWT/JWS: only RSA.

For zip/history signing: hashing algorithm to be used (for example, SHA-256).

For mail signing/hermod: a signature or hashing algorithm to be used (for example, SHA256withRSA).

size

For field encryption: size of the symmetric key, for example, 256.

result

For field encryption: Output format. Currently, the only possible value is

  • NX02: Output the raw bytes and some metadata.

key

Refers to a key defined in the same document

asymCipher

For field encryption: specific cipher description, for example, RSA/None/OAEPWithSHA384AndMGF1Padding.

When used with an HSM, you need to adjust the cipher format to be compatible with the JCE provider used for HSM access. 
For example, instead of the above cipher description, specify RSA/ECB/OAEPWithSHA-384AndMGF1Padding (ECB instead of None and SHA-384 instead of SHA384).

initVector

If this is missing, a random generated IV will be used. This is the recommended behaviour.

For migrating SmartAct or ProAct it is necessary to set a fixed IV here.

Key

This is an example of a key (taken from the file shown above in the example file engineSignEncryptConfig.xml or signencrypt.xml for docker deployment), see the tables below the example for more information.

Key example
Code Block
<key name="objectHistorySignerCert">
    <type name="pkcs12" locationValue="classpath:sign.p12" pin="1234"/>
</key>

...

Attribute of the type element inside key

Description

name

Type of storage. For example, pkcs12 and HSM are supported.

locationValue

  • For docker:

    For a software keystore: place the keystore under docker/compose/certsbefore creating the container with docker compose. Then set its location, prefixed with "classpath:", for example:

    locationValue="classpath:keystore.p12"

    Docker deployment does not yet support HSM.

  • For WAR file deployment: 

For a software keystore: place the keystore under web-inf/classes and set its location, prefixed with "classpath:", for example:

locationValue="classpath:keystore.p12"

For an HSM, use the filename of the PKCS11 library, without filename extension, for example,

locationValue="C:\Path\To\pkcs11_lib"

pin

PIN for the keystore or HSM.

To avoid having clear text PINs in this file, the pin should be scrambled. That can be achieved by setting it with

pin.encrypted="1234"

instead of

pin="1234"

See Scramble sensitive data in Identity Manager files for details.

Configure ObjectHistorySigner

Identity Manager needs access to the old descriptors and certificates in order to verify history entries signed with them. To make a change:

  1. Create a new descriptor with the same name but increase its version number.

  2. To use a new PKCS#12 container, create a new key entry with a unique name and reference it using the key attribute of the new descriptor.

Identity Manager will now use the new descriptor for signing future entries. Verification will automatically use the correct descriptor, that is, older entries will use the old descriptor(s) while new ones will use the new one.

...

Code Block
<?xml version="1.0" encoding="UTF-8"?>
<engineSignEncrypt>
    <descriptors>
        <descriptor name="ObjectHistorySigner" version="2">
            <type algorithm="SHA-256" size="" result="" key="signCertV2" />
        </descriptor>
        <descriptor name="ObjectHistorySigner" version="1">
            <type algorithm="SHA-256" size="" result="" key="signCertV1" />
        </descriptor>
      </descriptors>
    <keys>
        <key name="signCertV2">
            <type name="pkcs12" locationValue="classpath:sign.p12" pin.encrypted="1234" />
        </key>
        <key name="signCertV1">
            <type name="pkcs12" locationValue="classpath:sign_expired.p12" pin="encrypted:h1AKH0MeF1mOUSW1s+9vN+MAeA=="/>
        </key>       
    </keys>
</engineSignEncrypt>

Additional information

Expand
titleUseful links

...